Multi-objective Numeric Association Rules Mining via Ant Colony Optimization for Continuous Domains without Specifying Minimum Support and Minimum Confidence
نویسندگان
چکیده
Currently, all search algorithms which use discretization of numeric attributes for numeric association rule mining, work in the way that the original distribution of the numeric attributes will be lost. This issue leads to loss of information, so that the association rules which are generated through this process are not precise and accurate. Based on this fact, algorithms which can natively handle numeric attributes would be interesting. Since association rule mining can be considered as a multiobjective problem, rather than a single objective one, a new multi-objective algorithm for numeric association rule mining is presented in this paper, using Ant Colony Optimization for Continuous domains (ACOR). This algorithm mines numeric association rules without any need to specify minimum support and minimum confidence, in one step. In order to do this we modified ACOR for generating rules. The results show that we have more precise and accurate rules after applying this algorithm and the number of rules is more than the ones resulted from previous works. KeywordsAnt Colony Optimization for Continuous Domains, Numeric association rules mining, Multi objective association rules mining
منابع مشابه
Mining Frequent Ranges of Numeric Attributes via Ant Colony Optimization for Continuous Domains without Specifying Minimum Support
Currently, all search algorithms which use discretization of numeric attributes for numeric association rule mining, work in the way that the original distribution of the numeric attributes will be lost. This issue leads to loss of information, so that the association rules which are generated through this process are not precise and accurate. Based on this fact, algorithms which can natively h...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملRemote Sensing Classification based on Improved Ant Colony Rules Mining Algorithm
Data mining can uncover previously undetected relationships among data items using automated data analysis techniques. In data mining, association rule mining is a prevalent and well researched method for discovering useful relations between variables in large databases. This paper investigates the principle of traditional rule mining, which will produce more non-essential candidate sets when i...
متن کامل